

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A

FINAL YEAR PROJECT REPORT

ON

RAID ON CODE PIRATE (ROCOP): A Plagiarism Detection System

[EG777CT]

By:

Kailash Budhathoki (75012)

Rakesh Manandhar (75026)

Shilpa Singhal (75033)

A PROJECT SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULLFILMENT OF THE REQUIREMENT

FOR THE BACHELOR‟S DEGREE IN COMPUTER ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINNERING

LALITPUR, NEPAL

JANUARY, 2011

ii

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read and recommended to the Institute of

Engineering for acceptance, a project report entitled "Raid On Code Pirate (ROCOP): A

Plagiarism Detection System” submitted by Kailash Budhathoki, Rakesh Manandhar and

Shilpa Singhal in partial fulfilment of the requirements for the Bachelor‟s degree in

Computer Engineering.

Supervisor, Mr. Daya Sagar Baral

Lecturer / Director CIT

Department of Electronics and Computer Engineering, Pulchowk Campus

 __

Internal Examiner, Nanda Bikram Adhikari, PhD

Lecturer

Department of Electronics and Computer Engineering, Pulchowk Campus

 __

External Examiner, Mr. Bijay Kumar Roy

Deputy Director, Engineering Section

Nepal Telecommunications Authority

__

Project Coordinator, Surendra Shrestha, PhD

Deputy Head

Department of Electronics and Computer Engineering, Pulchowk Campus

DATE OF APPROVAL: January 31, 2011

iii

COPYRIGHT

The author has agreed that the Library, Department of Electronics and Computer

Engineering, Pulchowk Campus, Institute of Engineering may make this report freely

available for inspection. Moreover, the author has agreed that permission for extensive

copying of this project report for scholarly purpose may be granted by the supervisors who

supervised the project work recorded herein or, in their absence, by the Head of the

Department wherein the project report was done. It is understood that the recognition will

be given to the author of this report and to the Department of Electronics and Computer

Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this

project report. Copying or publication or the other use of this report for financial gain

without approval of to the Department of Electronics and Computer Engineering,

Pulchowk Campus, Institute of Engineering and author‟s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in

whole or in part should be addressed to:

S.R. Joshi, PhD/ Professor

Head of Department

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering

Lalitpur, Kathmandu

Nepal

iv

ACKNOWLEDGEMENT

We owe our deepest gratitude to the Department of Electronics and Computer Engineering,

IOE, Pulchowk Campus for providing us with an opportunity to work on a Major project as

part of our syllabus. We are heartily indebted to our project supervisor Mr. Daya Sagar

Baral for his constant support and guidance throughout this project. It was his valuable

suggestions that helped us to cope up with the emerging obstacles during the development

of this project.

We are also grateful to our Head of Department Prof. Dr. Shashidhar Ram Joshi for his

interest in our project that motivated us to put more effort in this project. We are also

grateful to all our teachers for their suggestions and inspirational lectures that paved the

way towards the completion of this project.

We express our gratitude towards our External Examiner Mr. Bijay Kumar Roy and our

Internal Examiner Nanda B. Adhikari for their valuable suggestions.

It is an honour for us to express our gratitude towards the D2 Hawkeye Services Pvt. Ltd

for their faith upon us and tremendous support and motivation by our mentors Jeny

Amatya and Biraj Shakya.

We also thank Er. Dhurba Adhikari for his immense support during this project. Last but

not the least; we would like to thank our colleagues for their valuable comments and

suggestions during this project. Any kind of suggestions or criticism will be highly

appreciated and acknowledged.

Kailash Budhathoki (kailash.buki@gmail.com)

Rakesh Manandhar (razenmask@gmail.com)

Shilpa Singhal (shilpa2109@gmail.com)

January, 2011

v

ABSTRACT

The information present in the internet is substantially getting large these days.

Additionally, the ease of access to such information has raised issues like plagiarism and

its detection. Plagiarism detection itself is a vague topic since the approach of defining

plagiarism varies among people and the prospective source of plagiarism is huge.

Various techniques are implemented to detect plagiarism but the quest for more accuracy

always remains. In this project, we aim to attempt plagiarism detection using structure

metric technique. We have used fingerprinting technique for identifying the plagiarism

between documents. Fingerprints are generated by implementing Hashing Technique on

the text of the document and winnowing those hash values. We have also created a web

base by crawling a small portion of the web. The system encompasses a database, which is

created by adding the fingerprints of the web pages in the web base along with their

location. It checks the fingerprints of the provided document with that stored in the

database.

We believe the research carried out during the project shall be invaluable for people with

interest in plagiarism detection. It should also interest those who are keen in carrying out

research in processing large scale data. The project has immense scope and it should

discourage people from plagiarizing their writings.

Keywords

Database, Fingerprints, Hashing Technique, Internet, Plagiarism Detection

vi

TABLE OF CONTENTS

PAGE OF APPROVAL...ii

COPYRIGHT .. iii

ACKNOWLEDGEMENT .. iv

ABSTRACT ... v

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xi

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Problem Description .. 2

1.3 Objectives .. 2

1.4 Scope of the project ... 2

1.5 Project Schedule .. 3

1.6 Organization of the report ... 3

1.7 Summary ... 3

2. REQUIREMENT ANALYSIS AND SPECIFICATION .. 4

2.1 Introduction ... 4

2.2 High Level Requirements ... 4

2.2.1 Features and modules ... 5

2.3 Functional Requirements .. 6

2.3.1 Specification of actors ... 7

2.3.2 Specification of use cases .. 7

vii

2.4 Non-Functional Requirements .. 10

2.4.1 Usability ... 10

2.4.2 Reliability ... 10

2.4.3 Performance ... 11

2.4.4 Security .. 11

3. LITERATURE REVIEW ... 12

3.1 Introduction ... 12

3.2 Plagiarism Detection or Prevention? ... 13

3.3 Common Techniques used by Plagiarists ... 13

3.4 Existing Plagiarism Detection Systems .. 13

3.5 GUI and Visualization ... 16

3.6 Programming Tools ... 16

3.7 Methodology ... 16

3.8 Summary ... 17

4. DESIGN ... 18

4.1 Introduction ... 18

4.2 High Level Design .. 19

4.2.1 System architecture .. 19

4.2.2 Deployment diagram .. 20

4.2.3 Data flow diagram ... 21

4.2.4 Class diagram ... 21

4.2.5 Project tools ... 22

4.2.6 Design rules ... 23

4.3 Detail Design ... 24

4.3.1 Fingerprint generation system ... 24

4.3.2 DBHandler class .. 26

4.3.3 fingerprintDB maintainer class .. 26

viii

4.3.4 Document class .. 27

4.4 Summary ... 27

5. IMPLEMENTATION .. 29

5.1 Introduction ... 29

5.2 Tasks Undertaken .. 29

5.3 System Components .. 30

5.3.1 GUI .. 30

5.3.2 Preprocessing of the input document ... 31

5.3.3 Fingerprint generator ... 31

5.3.4 Web base creator .. 32

5.3.5 Fingerprint comparator .. 33

5.3.6 Fingerprint database maintainer ... 34

5.4 Optimization .. 34

5.5 Error Handling .. 35

5.6 Testing ... 36

5.7 Summary ... 36

6. RESULT AND ANALYSIS ... 37

6.1 Output .. 37

6.2 Benchmarks ... 37

6.3 Comparison with Other Systems ... 42

7. CONCLUSION AND FURTHER WORKS .. 43

7.1 Conclusion... 43

7.2 Further Works ... 44

REFERENCES .. 45

APPENDIX A: Gantt Charts ... 46

APPENDIX B: Data Flow Diagrams ... 48

ix

APPENDIX C: Test Cases ... 51

APPENDIX D: Benchmarks .. 55

APPENDIX E: Different Implementation of Winnowing ... 57

APPENDIX F: Web Front-End ... 58

x

LIST OF TABLES

Table 6.1 Comparison of ROCOP vs. Viper…………………………………………41

Table C.1 Test Case table for input URL to URL dispenser list …………………......50

Table C.2 Test Case table for command to make/update DB of fingerprints………...50

Table C.3 Test Case table for login to the system…………………………………….51

Table C.4 Test Case table for input document…………………………………...…...52

Table C.5 Test Case table for usability……………………………………………….52

Table C.6 Test Case table for performance……………………………………….......53

xi

LIST OF FIGURES

Figure 2.1 Block diagram of the system………………………………………………..5

Figure 2.2 UCD for the system………………………………………………………....6

Figure 4.1 System architecture………………………………………….…………….19

Figure 4.2 Deployment diagram……………………………………………………....20

Figure 4.3 Context level diagram……………………………………………………..21

Figure 4.4 Class diagram of the system………………………………...…….………22

Figure 4.5 Fingerprinting some sample text…………………………...……………...25

Figure 5.1 Back-end structure of the repository……………………..……………......32

Figure 6.1 Window size for input document vs. Percentage similarity and total

 fingerprint……………………………………………………………..…...37

Figure 6.2 Database rows vs. Size of web-base, database update time with

 indexing and without indexing………………………….…………………38

Figure A.1 Initial schedule plan……………………………………..…………………45

Figure A.2 Final schedule plan…………………………………….…………..………46

Figure B.1 Level 1 DFD……………………………………....……………………….47

Figure B.2 Level 2 DFD – checking system………………………………………..…48

Figure B.3 Level 2 DFD – web-base system……………….………………………….49

Figure D.1 Number of line position changed vs. Percentage similarity……….............54

Figure D.4 Total characters vs. File size and generation time…………………………54

Figure D.5 Window size vs. Fingerprint count……………………………….………..55

Figure D.6 System load while using multi-processing………………………..……….55

Figure E.1 Winnowing loop with higher computational complexity……….…………56

Figure E.2 Winnowing loop with lower computational complexity……….………….56

Figure F.1 Homepage…………………………………………………………….........57

Figure F.2 Registration page…………………………………………………………..58

Figure F.3 Login page……………………………………………………………........59

Figure F.4 File upload page…………………………………………………………...60

Figure F.5 Admin-panel page………………………………………………………....61

Figure F.6 Result page……………………………………………………………...…62

Figure F.7 Plagiarised-part display page..63

xii

LIST OF ABBREVIATIONS

CPU Central Processing Unit

DB Database

DFD Data Flow Diagram

FP Fingerprint

GB Gigabyte

GUI Graphical User Interface

HTML Hypertext Mark-up Language

I/P Input

KB Kilobyte

MB Megabyte

MS Microsoft

O/P Output

ROCOP Raid on Code Pirate

SVN Sub Version

TB Terabyte

UCD Use Case Diagram

URL Universal Resource Locator

1

1. INTRODUCTION

1.1 Motivation

Nowadays all ideas and knowledge are based on previous knowledge and experiments,

especially in academic field. Thus it is of great importance that one should clearly

understand the actual meaning of plagiarism. There are a lot of misconceptions regarding

what plagiarism actually means. The subject is usually confused with the terms defined as

paraphrasing and common knowledge. Plagiarism is considered to be using other‟s ideas,

thoughts, and innovations or even work without actually acknowledging the source of that

information. The critical requirements like changes in a sentence with at least a single

word conversion, or change in a way a sentence is presented or even making a slight

change by just replacing the analogy or synonyms of some particular words fulfils the

criteria for the acceptance of plagiarism.

Plagiarism has been on steep rise in recent times particularly in the field of academia.

Tendency to plagiarize has been found to be increasing in students. The voluminous digital

content available to students online has made plagiarism only a matter of few clicks. This

seriously thwarts the goal of academic institution of producing students who can think

creatively and contribute positively to society.

Such activity of copying one‟s thoughts and ideas without understanding the subject and

without acknowledging the author should be stopped. Professors and teachers in the

institutions are now finding ways to prevent such activities. Their main focus is now on

encouraging students to use their own ideas as much as possible and even if they need to

use any common knowledge then it should be their responsibility to use the information

and form their own sentences rather than using the original words.

2

1.2 Problem Description

The exact definition of plagiarism seems to be unbounded, it seems vague. Plagiarism

either refers, to be copied and transformed or an unacknowledged copying. It applies not

only to the text or the documents but also various other aspects such as the source code of

the project assignments, musical notations, literature and many more other fields. Our

system ROCOP is focused to make its move against the plagiarism in text as well as source

codes. The main intention is to provide a system with suitable efficiency and accuracy

while detecting copying of the digital contents or plagiarized documents along with

appropriate speed.

1.3 Objectives

The main objective of this project is to develop plagiarism detection software capable of

detecting the extent of plagiarism in a particular document. The steps in achieving such can

be summarized as follows:

● Develop a web crawler capable of crawling web pages under some particular

domain.

● Create a web base of size 10MB containing pages of short-listed sites mined from

the Internet.

● Create a system that checks the provided document with the pages in the web base

within the time constraint imposed.

● Construct a system that provides platform independent services.

1.4 Scope of the project

As discussed above, plagiarism is visible in numerous fields, i.e. either in texts,

programming assignments, musical notations or in other practical situations. Variety of

approaches is applicable to handle such plagiarized contents. The approach used here is

structure metric. The system will be able to detect the plagiarism mainly in the text as well

3

as in source codes. The project is purely based on the research along with study and

analysis of various similar types of existing applications.

1.5 Project Schedule

Appendix A shows the Gantt chart for the initial project plan as well as for the schedule

actually implemented.

1.6 Organization of the report

The report is divided into seven chapters. The first chapter is the introduction, and covers

the objectives and scope of the project. Chapter two consists of the requirement

specification of the project and includes both functional and non-functional requirements.

The next chapter covers the literature review and deals with various researches done during

this project. Chapter four describes the design of the project and includes the high level

design and also the detail design of this project. The next chapter details out the various

tasks undertaken and the system components in detail. It also covers the issues such as

optimization, error handling and testing. Chapter six covers the output and various other

aspects such as benchmarks and comparison of this system with an existing system. The

final chapter is dedicated to the conclusion and further works of the project.

1.7 Summary

Today it has become an ease to access digital libraries with the technological advancement.

Large content of information being fuelled into the world wide server and browsers makes

it readily available on the Internet service. But this technology now tends to tilt towards the

illegal or an unacknowledged copying which is technically termed as the plagiarism. Thus,

after the simple overview of what the problem is, necessary objectives, and scope, the

requirement analysis started which is stated in chapter 2.

4

2. Requirement Analysis and Specification

2.1 Introduction

The need of presenting System Requirement Specification is to display a detailed

description of our system ROCOP. The Requirement Specification points out, what might

be the reason and features that the system would offer, the interfaces of the system, what

the system is supposed to do, the services and constraints on which the system will be

operating. It is obvious that, being the system developed to serve the users; these

specifications are must for them. Based on this specification, the user ensures whether the

documentation has been done correctly and completely. Also they check in whether the

system being developed meet the requirements and the features that they had proposed.

Along with this, it has of great importance in around the system developers and system

architects. The system developer makes this specification as a reference order to design

and build the system and its capabilities.

2.2 High Level Requirements

The diagram shown below represents the way the system will be functioning. Initially - the

user provides a document to the system, which is to be checked for plagiarism. The system

then undergoes numerous internal processing i.e. the system compares the provided

document with the large number of documents in the web base, and displays the matched

documents in the hierarchy based on the percentage of plagiarism.

5

2.2.1 Features and modules

The features that the system offers can be listed as below:

 Detection

The major task for ROCOP is to detect the extent of plagiarism in a document.

Thus, detection is considered as the most important feature of this system. It

scans the content of the document and displays the extent of plagiarism in it and

also shows the link of the pages from where the content has been plagiarized.

 Interactive User Interface

To whatever extent the system has been perfectly developed or whatever extent

the system performs the functions, if the user becomes unable to operate it or

faces the complications to use it, it is of no use professionally. Keeping this in

mind, this system offers an interactive user interface so that they can use it with

ease.

Raid on Code Pirate
 Document

 Input
Displays the plagiarized

parts in the document and

the matched documents in

the web base

Output

Means

Crawled Sites

Figure 2.1

6

 Web-base

The system provides a web base where the large numbers of pages are crawled

for particular domain and are stored. These pages are then further implemented

in the detection process.

2.3 Functional Requirements

The system provides a web base where a large number of pages are crawled for a particular

domain and are stored. These pages are then further implemented in the detection process.

Figure 2.2

User Input

document

Input URL in

URL dispenser

list

Set fingerprint

parameters

Command to

make/update DB

of fingerprints

Login to the

system

Admin

7

2.3.1 Specification of actors

The following actors are defined in the analysis phase of the ROCOP development process.

 Administrator

Administrator

Element Details

Description An Administrator is the one who performs the back-

end tasks like creating the web-base, maintaining the

database of fingerprints.

 End-User

End-User

Element Details

Description End-User is the person who has limited privileges and

uses this system for detecting plagiarism in

documents.

2.3.2 Specification of use cases

 Input URL in URL dispenser list

 Purpose

The Administrator initially needs to specify URLs manually.

 Specifications

For each URL, pages under the same domain are downloaded.

Input URL in the URL dispenser list

Element Details

Actor Administrator

Details The administrator needs to provide the list of all

possible URLs whose pages are to be crawled. At any

point of time, the dispenser list can be updated.

 Command to make/update DB of fingerprints

8

 Purpose

A database is designed to store the large number of fingerprints for the

contents present in the crawled web pages. For this, the administrator gives

the specific command.

 Specifications

Once the document is provided, its fingerprints are calculated and are stored

along with their corresponding document identifier, much like an inverted

index.

 Command to make/update DB of fingerprints

Element Details

Actor Administrator

Details The administrator must give the command to

make/update the database of fingerprints of the web

pages in the web base.

 Set fingerprint parameters

 Purpose

The fingerprint parameters are set in order to generate fingerprints from the

document.

 Specifications

The administrator should define the fingerprint parameters like length of k-

gram and the size of window by the help of which the required fingerprints

can be generated.

 Set fingerprint parameters

Element Details

Actor Administrator

9

 Set fingerprint parameters

Element Details

Details The administrator must set the parameters required

while generating fingerprints i.e. the length of the k-

gram and the size of the window

 Login to the system

 Purpose

Basically, the authentication feature is added so that the systems‟ security is

well maintained.

 Specifications

User needs to authenticate by logging in before using the sytsem. Existing

users can login directly whereas new users need to register in order to use

the system. It is must because the system has to be maintained within the

circle of security. After the user logs in, he/she can use the system for the

intended purpose.

 Login to the system

Element Details

Actor End-User

Details The end user needs to authenticate to the system in

order to maintain the security of the system.

10

 Input document

 Purpose

The user needs to provide the document which is to be checked for the

plagiarism.

 Specifications

Once the user is directed to the file upload page, after logging in, he/she

should provide a document for determining whether its contents are

plagiarized or not.

Input document

Element Details

Actor End-User

Details The End-User enters the document that is to be

checked for plagiarism.

2.4 Non-Functional Requirements

2.4.1 Usability

The system will provide the web interface to the end users with the optimum user-

friendliness so that they can get accustomed while operating the system.

2.4.2 Reliability

The system developed will be able to meet the customer expectations as well as, it would

be reliable to match up with the existing products. As per the implemented research, this

system would meet the objectives as specified and would be easy to maintain and carry out

for further extensions.

11

2.4.3 Performance

The system shall return the matched documents from its web base within considerable

amount of time.

2.4.4 Security

 The system provides a web interface, so in order to make the system secure, any

user needs to get authenticated. This would help the system be free from spamming

and other kinds of attacks.

 To prevent the system from being heavily loaded due to large file size, the size of

the input document should be limited. The limit specified here is 500KB owing to

the fact that the text file extracted from a report of size approximately 1.5MB

hardly exceeds 200KB.

12

3. LITERATURE REVIEW

3.1 Introduction

As described above, this project is all about detecting the extent of plagiarism in a

particular document. One of the important steps while developing such a system is to

examine all the research areas thoroughly. After describing the objectives and requirement

specifications, it is now necessary to know the basic details regarding plagiarism i.e. why

people plagiarize, what are its consequences. Also for designing such systems, existing

plagiarism detection systems are studied. Thus based on literature, the methodology and

programming tools for this system is justified. This section includes various research

aspects regarding the system.

Plagiarism is derived from two Latin words: „plagiarius‟ which means an abductor and

„plagiare‟ which means to steal. In spite of the various available definitions regarding

plagiarism, it is found that most of the students are still confused as per what shall be

considered as plagiarism. Though using references the copied work can be acknowledged

and not considered as plagiarism but improper citation also results in plagiarism.

Plagiarism can also be categorized as intentional and unintentional plagiarism.

Unintentional plagiarism occurs mainly when people are ignorant of using references. It

has been found that plagiarism is caused by people most likely when they have too much

work to be done in short time. Such plagiarism is not considered to be done intentionally

rather it is believed that lack of proper information regarding references causes it.

However the consequences of such plagiarisms depend mainly on the person who has

detected it and on that basis related actions are taken.

13

3.2 Plagiarism Detection or Prevention?

One of the major issues regarding plagiarism is that whether it is optimum to prevent

plagiarism or to cure plagiarism. As discussed above, it is found that most people

plagiarize unintentionally. Thus in such cases it is optimum to avoid such plagiarism. In

order to prevent, such plagiarisms it is necessary to make people aware of using references,

citations and also provide them proper knowledge regarding when to use them.

Prevention requires a lot more research but detection also plays a major role as without

detecting the plagiarized work, it is impossible to prevent it or even cure it. Though this

project concerns mainly about the detection of plagiarism, its future enhancement can even

cover the prevention techniques.

3.3 Common Techniques used by Plagiarists

It is always beneficial to know what common plagiarism techniques are practiced so that it

would be easier to detect them. Some common techniques are mentioned below:

a. Changing the word using synonyms

b. Altering the order of their occurrence

c. Mixing original and copied text

d. Incorrect references

e. Changing the variable names, function names, class names

3.4 Existing Plagiarism Detection Systems

In order to develop a plagiarism detection system, it is important to study all the existing

systems so that the system to be developed covers all or at least some of the deficiencies of

the existing systems. As discussed above, this plagiarism detection system compares the

uploaded suspect document with a large amount of other documents stored and tries to

show the matched parts of the suspect document with that stored in the web base. But in

order to find that a particular document is plagiarized or not it is necessary to include the

14

original source from where the document has been copied into the web base. Most of the

plagiarism detection system uses large, internal databases that increase on addition of each

uploaded documents for analysis.

Many factors are to be considered while designing a plagiarism detection system. These

factors include scope of the search, the delay time between submission of document and

result obtained, the number of document that can be processed per unit time by the system,

the algorithms used, the number of document that are flagged as plagiarized and the

number that are not actually plagiarized but flagged as plagiarized.

Some of the existing plagiarism detection systems are mentioned below:

 Viper

It provides the free access to plagiarism detection service (on monetary basis) for

text and has more than 10 billion resources in its internal database. Viper client

needs to be downloaded on the desktop in order to function and the user needs to

register before use. The result is shown providing the links to plagiarized works and

also highlights the potential areas of plagiarism.

 MOSS

 MOSS (Measure of Software Similarity) measures similarity of source codes in

programming classes. MOSS is accessed as a web service and displays results using

HTML pages, giving large amount of user feedback on where similarities occur [3].

Like other systems however MOSS lacks methods which can measure the similarity

of a number of factors and in particular semantics [3].

 DOC Cop

DOC Cop is a plagiarism detection tool that creates reports displaying the

correlation and matches between documents or a document and the Web. It is an

Australian service with fast turn-around, capable of comparing multiple documents

at a time.

15

 CopyTracker

 CopyTracker is an online text based plagiarism detection tool. It is free, open

source and easy to use, requires no installation or even login. It has no database i.e.

the document uploaded by the user is deleted after processing the analysis. It

supports formats such as text, HTML, MS Word 2003, MS Word 2007 and even

OpenOffice Writer.

 SeeSources

 SeeSources works by extracting all the unique keywords of the uploaded document

and then uses the Internet to search for them. The result is shown as the Internet

sites which matches with the document ordered according to relevancy. The results

are filtered by calculating the signature similarity and matched passages are shown.

 eTBLAST

 eTBLAST is a text similarity search engine currently offering access to the

MEDLINE database, the National Institutes of Health (NIH) CRISP database, the

Institute of Physics (IOP) database, and the NASA technical reports database. The

eTBLAST server compares a user's natural text query to target databases using a

hybrid search algorithm consisting of a low-sensitivity weighted keyword-based

first pass followed by a novel sentence-alignment based second pass.

 Chimpsky

 Chimpsky is a text plagiarism detection system that searches duplicate words

within a set of documents using Google for its web base. It needs user account in

order to be accessed.

 PlagiarismCheck

 PlagiarismCheck is a text based plagiarism detection system that works by taking a

document upload by user, processing it and shows the result as a .PDF report.

 Plagiarism-Detect

 This system is used to check unlimited pages accurately without any timeout

http://en.wikipedia.org/wiki/Search_engine
http://en.wikipedia.org/wiki/MEDLINE
http://en.wikipedia.org/wiki/National_Institutes_of_Health
http://en.wikipedia.org/wiki/CRISP
http://en.wikipedia.org/wiki/Institute_of_Physics
http://en.wikipedia.org/wiki/NASA

16

3.5 GUI and Visualization

The main focus of this project is to detect the extent of plagiarism in a particular text

uploaded by the user. Hence user plays an important role here. Another concern of the

developer also lies in providing the user with an easy to access, user friendly, well

designed interface. Providing such interface always helps in increasing the usability of the

system. Such an interface is very necessary as that is the only way any user can interact

with the system. This helps in visualizing various amounts of data in an appropriate way

providing accurate and easy to understand results to the user.

Visualization plays an important role while displaying large amount of information or data

because it is very essential to compress such large amount of data into small area showing

comparisons.

3.6 Programming Tools

The design which is to be used for this project can be implemented using almost all

programming languages. However the implementation language used here is Python

programming language. Python is a platform independent language that runs on Windows,

Linux/Unix, Mac OS X, and has been ported to the Java and .NET virtual machines as

well. It is an OSI-approved open source language i.e. is free to use.

3.7 Methodology

Methodology is analysis of the tasks to be done in order to obtain the desired output. An

appropriate methodology mainly results into a successful project and vice-versa. Here, for

this system, a number of methodologies were considered and the most efficient ones are

used. This doesn‟t mean that one particular method is used. According to the system, the

most appropriate ones are used in combination.

The model used here is an iterative model i.e. in the beginning a small subset of the

software requirement is developed and then using the concept of redesign and

redevelopment its further versions are enhanced. This process is continued until and unless

17

the desired system is developed that produces results as mentioned in the system

requirements.

The methodology once decided is changed during the project if there arise any

circumstances where the design emerged any flaws. Thus based on the situations

appropriate methodologies are implemented.

3.8 Summary

The background research focused on the clear definition of plagiarism, what causes it, who

causes it? It also focused on how can one detect plagiarized text and then apply methods to

prevent further plagiarism or even cure it. It also emphasized on the existing plagiarism

detection systems, their plus points and minus points. It helped to decide what design,

methodologies and programming tools should be used while developing this project so that

it overcomes at least some of the weaknesses of the existing systems. After considering all

the above factors, the following section explains the design chosen in order to solve the

problems.

18

4. DESIGN

4.1 Introduction

This section gives a detail review on the design on which the system developed is

implemented. It includes

 System architecture

 Data flow diagram

 Deployment diagram

 Detail class diagram

19

4.2 High Level Design

4.2.1 System Architecture

End User

User

Validation

Queuing

System

FP

Generator

Admin

Crawler

Web Base

F
P

 D
B

I/P

docs

Seed

URL

Comparator

i/p

docs_FP

Users in

 queue

User

Authentication

Crawled pages

FP

Crawled

pages

FP

M
a

tc
h

e
d

 d
o

c
s

Multiple

Users
FP

Generator

Crawled

pages

FP

 Figure 4.1

The system has client server architecture. Administrator of the system fetches the seed

URLs to the URL dispenser list. The web pages from the provided URLs are then crawled

and put to the Web Base. Fingerprints of the pages are then generated and kept on the

fingerprint database. The end-user first needs to authenticate and then only they can upload

the documents to check for plagiarism. Then the fingerprints of the input document is

generated. Traffic of end-users is managed by the queuing system. Finally, the fingerprints

of input document is matched with the fingerprints of web pages in the fingerprint

20

database. The result is shown as the percentage similarity of the input document in context

to the pages stored in the web-base. It displays the plagiarized part within the document. It

also shows the percentage of similarity of the document with each document in the web-

base along with the links for the matched pages.

4.2.2 Deployment diagram

Figure 4.2

The application is built around client/server architecture. Multiple client machines can

interact with the server simultaneously. Clients can interact with the system through an

interactive GUI, while the server serves the client‟s request and does the processing in

the backend.

Client

Client

Client

Server

21

4.2.3 Data flow diagram

Figure 4.3

The further classification of data flow diagram is shown in Appendix B

4.2.4 Class diagram

The system is implemented by mixing both the object oriented and procedural

programming methodology. Some portion of the system is built on top of framework, so

using OOP in such parts has been a major difficulty. Some of the core classes of system

along with their association is shown below:

End User

 Admin

1.0

Plagiarism

Detection

System

Input docs/login

info

Matched docs

/denial

Input URL/FP

parameters /

Command to

make FP DB

22

Figure 4.4

4.2.5 Project tools

 Programming Language: python

 Web Framework: Django

 External Crawler Library: Chilkat 2.0.0

 Database: MySQL Server Version 5.1.41

 Testing: PyUnit

 Versioning: SVN (http://svn.collaborate.d2labs.org/svn/rocop)

 Tracking: D2 Labs (http://collaborate.d2labs.org/projects/rocop/)

1 ... *

1 ... 1

* ... 1

1 ... *

fingerprintDBMaintainer

-

+saveFP()

Document

-docName

-kgrams

-fingerprints

-matchCount

-lessContentFlag

-allInfo

-docToPercentMatch

+read_file()

+check()

+sort_match_doc_freq()

+get_kgram_from_fp()

fingerprintGenerator

-docString

-base

-divisor

-kgrams

-hashValues

-kLength

-windowSize

-fingerprints

-circList

+generate_kgrams()

+generate_rollingHash()

+next_hash()

+rocord_global_pos()

+winnow()

+generate_fingerprints()
DBHandler

-conn

-cursor

-query_prefix

-query

+connect_to_db()

+update_fingerprint_db()

+insert_records_into_db

+check_fp()

23

 Drawings: MS Paint, MS Visio, GIMP

 Documentation: MS Word/Excel/PowerPoint, Google Docs, OpenOffice.org Word

Processor/Spreadsheet/Presentation

 Platform: Ubuntu Release 9.10

 IDE: Stani‟s Python Editor

 SVN Client: Rabit VCS

 Webserver: Django development server

4.2.6 Design rules

The system is accompanied by the following set of design rules:

 There will not be any race conditions while using threads or processes for handling

multiple end users.

 The uploaded (input) documents are kept on the local file system of the server and

remains there until it has been checked or for a certain time.

 Garbage collection and file chunking must be considered to make the system

memory efficient.

24

4.3 Detail Design

4.3.1 Fingerprint Generation System

 Purpose

This system is used to generate the fingerprints of both input documents and

crawled pages.

 Class Diagram

 Algorithms Used

o K-grams are generated by reading the entire document as a string and then

slicing that string starting from first index up to the length of k-gram and

repeatedly incrementing the front index and last index simultaneously until the

number of k-grams is equal to the number of characters in the document string.

o Calculate the hash from i+1
st
 k-gram easily from the hash for the i

th
 k-gram

using Karp-Rabin rolling hash function. Treat a k-gram C1 C2 C3 … Ck as a k-

digit number in some base b, usually a large prime.

Hash (C1 … Ck) = C1×bk-1 + C2×bk-2+ … + Ck-1×b + Ck

Hashꞌ (C1 … Ck) = Hash (C1 … Ck) ×b

Then, Hashꞌ (C2 … Ck) = ((Hashꞌ (C1 … Ck) − C1×bk-1) + Ck+1) ×b

fingerprintGenerator

-docString

-base

-divisor

-kgrams

-hashValues

-kLength

-windowSize

-fingerprints

-circList

+generate_kgrams()

+generate_rollingHash()

+next_hash()

+rocord_global_pos()

+winnow()

+generate_fingerprints()

25

Modulo of the resulting hash value is calculated afterwards to confine the hash

values within a certain bit limit. Karp-Rabin algorithm uses ɵ(m) processing

time and its worst case running time is ɵ((n−m+1)m) where n is the length of

the text and m is the length of the pattern that is to be discovered in the text [4].

o By taking a window size, group the hash values into window. In each window,

select the minimum hash value. If there is more than one has with the minimum

value, select the rightmost occurrence. This process is called winnowing and it

is guaranteed to detect at least one k-gram in any shared sub-string of length

w+k−1 where w is the window size and k is the k-length [2]. The following

figure illustrates the fingerprinting process of a sample text.

Figure 4.5

A do run run run do Run run

a. Sample text [2].

adorunrunrundorunrun

b. The text with irrelevant features removed [2].

adoru dorun orunr runru unrun nrunr runru unrun nruna runad unado

nador adoru dorun orunr runru unrun

c. The sequence of 5-grams derived from the text [2].

‘a’=97, ‘d’=100, ‘o’=111, ‘r’=114, ‘u’=117

Hash value= 97*101
4
+101*101

3
+111*101

2
+114*101

1
+117*101

0

d. Sample hash value calculation for „adoru‟.

77 74 42 17 98 50 17 98 8 88 67 39 77 74 42 17 98

e. A hypothetical sequence of hashes of the 5-grams [2].

[77 74 42 17] [74 42 17 98] [42 17 98 50] [17 98 50 17]

[98 50 17 98] [50 17 98 8] [17 98 8 88] [98 8 88 67]

[8 88 67 39] [88 67 39 77] [67 39 77 74] [39 77 74 42]

[77 74 42 17] [74 42 17 98]

f. Windows of hashes of length 4 [2].

17 17 8 39 17

g. Fingerprints selected by winnowing [2].

26

4.3.2 DBHandler Class

 Purpose

This class interfaces the database and facilitates various queries.

 Class Diagram

4.3.3 fingerprintDB Maintainer Class

 Purpose

The instance of this class is used for maintaining the database of fingerprints.

 Class Diagram

DBHandler

-conn

-cursor

-query_prefix

-query

+connect_to_db()

+update_fingerprint_db()

+insert_records_into_db

+check_fp()

fingerprintDBMaintainer

-

+saveFP()

27

4.3.4 Document Class

 Purpose

For each uploaded document, an instance of this class is created.

 Class Diagram

4.4 Summary

After discussing the design in detail, it would be easier to implement these in order to

generate a successful system. The implematation details regaridng this project are

explained in the following section.

Document

-docName

-kgrams

-fingerprints

-matchCount

-lessContentFlag

-allInfo

-docToPercentMatch

+read_file()

+check()

+sort_match_doc_freq()

+get_kgram_from_fp()

28

29

5. IMPLEMENTATION

5.1 Introduction

The system components as identified in the design specification from the design phase and

the software requirements specification from the analysis phase are built either from

scratch or by composition in the implementation phase. This section documents the issues

that arose during the implementation phase together with the adopted solutions.

5.2 Tasks Undertaken

Every tasks identified in the design specification has been carried out in this phase.

Building the detection module took more time than expected because of the incorrect

pseudo code presented in the research paper. Reducing the computational complexity and

system load has also been the time-consuming tasks worth noting down. Dealing with

multiple end users by implementing multi-threading as specified in the design specification

has been modified and later multi-processing has been used by observing the systems'

performance to the multiple users' simultaneous request. The process of crawling the

websites, saving the WebPages to html file and then extracting the text data from the

crawled html files has also been an issue because the whole documentation has to be read

carefully thanks to the third party library used for the crawler. Numerous issues rose out of

the blue while implementing the system as per the specifications from the earlier phase.

The system which is supposed to be deployed on distributed server architecture has now

been implemented in the single server architecture considering the time frame of the

project's end date. Various anticipated and unanticipated problems that emerged during the

implementation phase compelled us to alter the project schedule slightly as indicated in the

Appendix A.

30

5.3 System Components

5.3.1 GUI

The application is web based so the service can be accessed through the browser. End users

can interact with the system from the web page. The entire front-end for end-user is built

using Django framework for python. Django provided a high level python web framework

also termed Model Template View framework and facilitated faster, cleaner and pragmatic

design. A separate template is used for rendering each page. Homepage of the website is

the first place where the users land. There are two links for login and register. New users

can register themselves by filling up the valid information and clicking on the register

button. This system does not require extra entities except the username, password and

email which are provided in default by the django's forms module so that no models have

been created for the web application. Those who already have an account can directly login

to the system using their username and password in the login page. Once the end users

login to the system, they are directed to the file upload page. For handling the file upload

box, a custom class has been created by inheriting the features of django's forms module

and its instance is used. As soon as users select the file for detection and click the Begin

Detection button, view file of the django app handles the client's request and spawns new

processes for each user‟s request. The result of the detection is presented in the new page

where overall document similarity, relevancy & individual similarity percentage with each

source from which document was copied is presented. Moreover a part of the document

which has been plagiarized is also displayed in the page to follow. The plagiarized source

URL has been trimmed to 50 characters so that the entire result page wouldn't be

overwhelmed with the long URLs. Django does not have any native template tags to

perform this function. So a custom template tag named truncatechars was also created.

Implementing the system as a web based service has entailed many advantages: one of

them is being the platform independent access to the service.

Administrator must login in to the system before accessing the admin panel. Admin panel

provides facilities like initiating the crawler, updating the fingerprint database. It also

displays the name of the websites which are in the local repository. Django Celery library

31

is used for implementing asynchronous calls to the crawler and to the fingerprint database

maintainer module.

5.3.2 Preprocessing of the input document

Documents are pre-processed before carrying out the comparison by the system. Once the

document is uploaded to the remote server by the end-user, it is then read using simple file

handler and then pre-processed using list comprehensions feature included in the python

programming language. Irrelevant features like white spaces, upper cases, line feed

characters, newline characters, etc are eliminated by this component of the system. Output

of this component is the string of standard form which is then fed to the fingerprinting

engine.

5.3.3 Fingerprint generator

This is one of the core components of our system. The system fully relies on the

fingerprinting technique. A string of standard form which is obtained after pre-processing

the input document is taken and the fingerprints are generated. The generation of

fingerprints has been achieved through a serious of steps in order: generating k-grams from

the string, generating the hash value for each k-gram, winnowing the hash values to finally

obtain the fingerprints of the document.

A simple single for loop with few conditional statements has been applied for generating k-

grams from the standard string.

Karp-Rabin rolling hash function has been implemented in generating the hash values from

each k-gram. At first simple Karp-Rabin hash function was used, the hash value generated

by which was later realized to be insignificantly changing among consecutive k-grams.

Once the hash values are generated, they are put on a circular list for their further use in

winnowing.

32

Winnowing is a vital process in fingerprint generation. It has been tested with two different

algorithmic implementations. Efficiency being the important consideration in

fingerprinting, it has been found that implementation in figure E.2 substantially reduces the

fingerprint generation time compared to the one presented in figure E.1 as shown in

Appendix E. The implementation presented in figure E.2 takes benefit from the fact that in

most of the time, minimum hash value from the preceding window is still in the current

window.

List operations and comprehensions of python have been extensively used in this

component for text processing.

5.3.4 Web base creator

Web base is a local repository of the web pages crawled from the Internet. So this

component is not only concerned with the creation but also with its maintenance of web

base. Chilkat, a third party python library, has been implemented in crawling the websites

from the Internet. Crawler takes the list of URLs along with the number of web pages to

crawl from the URLs and then crawls the web pages from each web site. The web pages

from each website are stored in a directory named after the website's URL inside the

repository directory. The web pages crawled from http://www.xyz.com/ would thus be

stored inside the directory named xyz.com which itself resides inside the repository

directory. For each crawled pages, the html files are stored with the integer name in an

increasing fashion. For http://www.xyz.com/ the WebPages like http://www.xyz.com/,

http://www.xyz.com/abc, http://www.xyz.com/pqr, http://www.xyz.com/mno etc will be

stored inside the xyz directory under the name of 0.html, 1.html, 2.html, 3.html. Later only

the texts are extracted from the html files using chilkat's functionality and stored again in

the integer names but now with a .txt extension. That would mean x.html would thus map

to x.txt. The URL corresponding to all text/html files are lastly written in a log file. Doing

that has helped retrieving the web page URL easily by using the web page identifiers just

by reading the log file. Moreover using web page identifiers reduces the size of database

because of the reduced namespace. The entire back end structure of the repository is shown

in figure 5.1.

http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/abc
http://www.xyz.com/abc
http://www.xyz.com/pqr
http://www.xyz.com/pqr
http://www.xyz.com/mno

33

Figure 5.1

5.3.5 Fingerprint comparator

This component has been implemented using the functionality of various other modules.

First, the input file is read using the file handler of python. It is then pre-processed before

carrying out the comparison using the pre-processor component.

The standard string obtained from the pre-processor component is then passed to the

fingerprint generator which generates the fingerprints of the string. Each fingerprint of the

string is then compared against the database by calling the method, which checks the

fingerprint, from the database handler module. The list of document identifiers for

matching fingerprints are then stored in a dictionary containing fingerprint to list of web

page identifiers as a key, value pair.

The overall similarity index is obtained by calculating the fraction of total number of

matching fingerprints of a document against the database to the total number of

Repo

0.txt 1.txt mapper.log 0.txt 1.txt mapper.log

x.com fp.log y.com

Repository

Directory

Sites

Directories

Pages of

Websites

34

fingerprints of the document. The web page identifier is represented in a web site name

hyphen count format. For the website http://www.xyz.com/abc stored in the repository, the

web page identifier for the page abc would be xyz-0 if the page abc is stored as 0.txt in the

repository. The web page identifiers for all matching fingerprints are collected in a single

list and their corresponding web page URL along with the percentage of match between

that particular web page and the input document is calculated and saved in a dictionary.

Likewise k-gram match of the input document belonging to each web page is calculated by

implementing couple of loops. Also consecutive k-grams are discovered and merged if

found any.

5.3.6 Fingerprint database maintainer

Building a database of fingerprints has been one of the most problematic parts in our

system. This component first reads a log file before fingerprinting the web pages inside the

web base. The log file contains the list of websites, the web pages of whose has been

fingerprinted and inserted in the database. If any website has been recently crawled, its

name won't be in the log file and by scanning this log file, this component would thus

generate the fingerprints of the web pages inside those websites are generated by this

component and the database is updated. Lastly the log file is also updated indicating that

the web site's fingerprint has been already inserted in the database. For each web page, the

standard string after pre-processing the web page file is then fetched to the fingerprint

generator which generates the fingerprints. Fingerprints of a particular web page are

updated in the database one by one. Database handler is called every time a fingerprint is

to be updated in the database. If the database already contains the fingerprint, the web page

identifier is appended on the documents column of that row much like an inverted index

used by search engines else new record is inserted. The record would contain fingerprint

and its web page identifier. The frequent updates within the actual web pages of a website

are yet to be dealt with.

5.4 Optimization

http://www.xyz.com/abc

35

Performance of the system is the stringent requirement of the system. The database has

been first implemented without indexing the table structure. The performance of the

system has been observed to be significantly slow without indexing the table. Indexing the

table with fingerprint has increased the systems' performance. Owing to the optimal

utilization of system hardware configuration and the independence of clients' request,

multi-processing has been preferred to multi-threading. Winnowing loop has also been re-

implemented considering the resource hungry nature of our previous implementation as in

Appendix E.

5.5 Error Handling

Any system is exposed to both anticipated and unanticipated inputs. Thus handling of error

is always crucial since at times system can malfunction because of the change in the inputs

and external factors and system must handle such errors gracefully. Try, except statements

provided in native python installation has been extensively used for dealing with the errors

in the system.

Identification of the points and operations in the system where errors are most likely to

occur plays an important role in building a robust system capable of handling errors.

Opening files, registering users, login, selecting invalid file type for detection, file size

exceeding the limit, providing the result when there is no case of plagiarism, crawling an

invalid web site, & mostly errors while getting inputs from the users has been discovered

as the error prone operations in the system. Simple conditional statements has been

inserted for general problems like detecting file type, file size, etc whereas built-in try,

except statements are used for solving specific issues that requires special care like

IndexError, ValueError, KeyError, etc. Instead of forcing the system to quit, error handling

has facilitated the user with an option to retry by notifying that some kind of error has

occurred at a certain section or point. This has proven to be really helpful for systems'

robustness.

36

5.6 Testing

The system has been tested since its inception for the quality assurance. The traditional

approach of testing software after completion of the project has not been adopted. But

rather testing has been carried out throughout the development time as indicated in the

schedule in Appendix A.

Unit testing has been carried out on each module before integrating them. Black box

testing and white box testing has been undertaken for ensuring the quality of the software.

Black box testing has been advantageous to find out the errors in the modules just by

observing the inputs and outputs of the modules. For internal details on modules, white box

testing has been used. Some modules functioning properly in their standalone form might

not perform well when used in conjugation with other modules. Thus the system has also

undergone a thorough integration testing after integrating modules.

The manual test plan along with their expected result and observed result is presented in

Appendix C. While conducting tests, some of them were unsuccessful and the errors

encountered during those tests has been noted which were immediately accounted while

correcting those bugs. Continuous testing has been an important factor for introducing the

enhancements in the system at times. Alpha testing has also been conducted on the system.

Criticisms and bugs reported during alpha testing have also been incorporated into the

system. Sometimes the bug in one part of the system has an adverse effect on the other

part. And fixing those bugs has taken more time than expected at many times thereby

leading to the change in initial schedule plan as depicted in Gantt chart in Appendix A.

5.7 Summary

This section has documented the implementation of design solutions presented in design

specification to meet the software requirements specification. The changes in initial project

schedule has also been documented and justified. Moreover, testing of the system has been

documented too. The following section documents the output of the system and its

analysis.

37

6. RESULT AND ANALYSIS

6.1 Output

The system provides the result to the client in an easy to understand way. The web crawler

and the fingerprint DBMaintainer has functioned successfully in the back-end. When

document is uploaded to the system, it carries out the comparison and returns the result

back to the end-user. The web front-end not only shows the overall document similarity

but also displays the relevancy with individual documents and the parts of the document

which has been plagiarized. The screenshot of the output is shown in Appendix F.

6.2 Benchmarks

The various benchmarks are shown in Appendix D. The explanation of graph is shown

below:

 Number of line position changed vs. Percentage similarity:

The changes in line position inside a document results into the change in the

percentage similarity of the document with the source. This change is decreasing in

nature as represented by the figure D.1.

 Window size for input document Vs Percentage similarity Vs Number of

fingerprints:

The database of fingerprints is generated by winnowing the web pages with window

size 100 and k-grams of length 50 by observing their best pair for the optimal

performance. Then the input documents are fingerprinted using various window

sizes. Fingerprinting the query documents with larger window size reduces its

number of fingerprints. The overall similarity percentage is highest at the window

size 100 which is the exact value for both the query documents and the database

generation. The most notable characteristic has been the reduction in the number of

38

fingerprints which implies less memory or disk accesses to lookup the fingerprints.

This could be useful when it is aimed to perform faster but coarser estimate of

matching in documents or reduce the work per query in a heavily loaded system.

This phenomenon has been observed as depicted by the figure below:

Figure 6.1

 File size (number of characters) Vs. Fingerprint generation time (CPU seconds):

As trivial as it seems, size of file is linearly proportional to the number of characters

inside the file. Likewise, the fingerprint generation time which is calculated in CPU

seconds is also linearly proportional to the number of characters in the document.

The more the characters in the file or the more the file size, the higher the time to

generate its fingerprints. This phenomenon has been described by figure D.4.

 Size of web base Vs. DB update time:

In ROCOP, fingerprints of the web pages are stored in the database in an inverted

index like fashion mapping fingerprint to its document identifier. The larger the web

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

window size for i/p

documents vs

percentage

similarity

window size for i/p

documents vs total

fp

Window size for input documents Vs. Percentage similarity, Total fingerprints

Window size for input documents

Percentage

similarity, Total

fingerprints

39

base size, more and more fingerprints are generated and thus the rows inside the

database table scales linearly with the size of web base. The test has been carried out

with two different structures of table inside the database; by indexing the table with

the fingerprint and without indexing the 'fingerprint' table. The change in

performance observed is highly significant as indicated by figure 6.2. The database

update time corresponding to the size of web base without indexing the table has

been exponential in nature. Later when the table is indexed, the database update time

has been almost linearly proportional to the size of the web base. This plays an

important role in scaling the system for large size of web base. However, by using a

rough calculation, it would still take more than 100 days to update the database for a

web base of size 1 TB. The system can gracefully scale up to web base of size 1GB

even for which the database update time would be roughly around two and half hour

in the current hardware configuration. NoSQL is a definitely a better alternative to

opt for scaling the system to a larger web base.

Figure 6.2

0

5000

10000

15000

20000

25000

30000

35000

40000

0 100000 200000 300000

DB rows vs size of

web-base

DB rows vs DB

update time with

indexing (CPU

secs)

DB rows vs DB

update time

without indexing

(CPU secs)

DB rows Vs. Size of web-base, DB update time with indexing, without

indexing (CPU secs)

DB rows

Size of web-

base, DB update

time with

indexing,

without

indexing (CPU

secs)

40

 Different pairs of k-length and window size Vs. Percentage similarity:

It is always desirable to pick the k-length and window size, which accumulates as

low error as possible and picks the lesser number of fingerprints. While considering

those pairs, the size of k-length shouldn't be neither too large so that the k-grams

with size less than that, which would be considered a reasonable cheating, couldn't

be detected nor too small to increase the time for processing. A compromise has to

be made between those factors. With due observation of the system using all possible

kinds of pair, k-length of 50 and window size of 100 were chosen for the future use.

 Multi-Threading Vs. Multi-Processing:

Multi-Processing was used due to the following reasons:

 Whatever be the number of threads, they run merely on one core despite using

a machine with multiple cores. Processes however run on different cores

utilizing the hardware configuration of the machine at its optimum.

 Spawning processes is faster than spawning threads in Linux.

 The detection requests by multiple clients in our application are independent so

a parallel way of processing is required. Considering the above benefits of

multi-processing over multi-threading in our typical application, we prefer

multi-processing to multi-threading

The system has been tested with both multi-threaded and multi-processed

architecture. Due to lack of resources it has been tested with four clients and the

result showed that the system performed gracefully with multi-processing as depicted

in figure D.6.

41

The current configuration is as shown below:

 Hardware Configuration:

 Computer Model: MacBook2,1

 ROM BIOS size: 2048KB

 Processor: Intel(R) Core(TM) 2 CPU, 2 GHz

 Cache Size: 4096 KB

 Physical Memory: 2GB, DDR2, 667MHz

 Software Configuration:

 OS: Ubuntu Release 9.10(Karmic)

 Kernel: Linux 2.6.31-16-generic

 Desktop Environment: GNOME 2.28.1

 Softwares: Python 2.6.4rc2 (r264rc2:75497)

 Django 1.2.3

 MySQL Server Version 5.1.41-3

42

6.3 Comparison with Other Systems

The following table shows comparison of ROCOP vs. Viper:

Table 6.1

S.N. Features ROCOP Viper

1 Free/Open Source Free and Open Source

Software

Free (on monetary basis)

2 File Format .txt .doc, .pdf, .html, .rtf, .cs, .java

3 Platform Support Platform independent Windows only

4 Client Interface Web Page Viper Client (software must be

downloaded for use)

5 Upload Limit 500 KB Unlimited

6 Database Size Small Large (10bn resources)

7 Reliability Higher High

8 Comparison Algorithms Hashing, Winnowing Undisclosed

9 Analysis Time (for a file

size of 3KB)

1.87 seconds 3 seconds

10 Citation Detection No Yes

11 Scope of search Internal Database Internal Database

12 Threshold 50 characters No such threshold limit exists

13 Accuracy (for a particular

document which is

replicated from a page in

the web-base)

97% 100%

14 Links to plagiarized work Yes yes

15 Relevancy Yes Yes

16 Percentage similarity index Yes No

17 Accepts an empty file No No

43

7. CONCLUSION AND FURTHER WORKS

7.1 Conclusion

Detection of plagiarism and hence its prevention is a very laborious work that requires

deep research of the subject. This project aimed to develop a plagiarism detection system

that detects the extent of plagiarism in a particular document uploaded by the client.

Subsequent numbers of literatures were reviewed before starting the project. Design

considerations were then carefully undertaken and implemented. The result obtained by

implementing different algorithms and methods are within the desired framework.

Different algorithms and methods are used and the result is shown as desired. The

developed system is also compared with the existing plagiarism detection system, Viper.

Though the system needs some improvements and the future enhancement is also a

challenging task, the overall outcome of the project is as expected in its design

consideration.

Enormous knowledge has been gained throughout the project work. The importance of the

background research, requirement analysis and specifications, well designing concept, and

superior methodology were learnt. Also implementation techniques, testing, error handling,

optimisation issues and the predictability of problems such as when to perform a certain

task, have been exercised. Thus we hope that the system developed will certainly

contribute for the plagiarism detection and prevention and will be supported by many

Free/Open source enthusiasts for its enhancement in the future.

44

7.2 Further Works

Due to time constraint, many features couldn‟t be incorporated in the project. The system

can be upgraded in many aspects. Below is the list of tasks that can be incorporated in

future.

 Using NoSQL for storing fingeprints and list of web page ids.

 Adding the feature to compare between two or more documents.

 Implementing the system in distributed server architecture.

 Using a better algorithm to find the consecutive k-grams match.

 Implementing captcha while registering users as an added security.

 Using a distributed crawler for crawling, a large portion of web.

 Compressing the crawled content.

 Incorporating the ability to update the database for re-crawling of the websites which

have already been crawled and fingerprinted.

 Implementing the ability to detect citation in the document.

 Implementing the ability to insert reference in the document.

 Customizing the system to include the uploaded documents in the repository.

45

REFERENCES

[1] Junghoo Cho, et al., "Stanford WebBase Components and Applications", ACM

Transactions on Internet Technology (TOIT), May 2006.

[2] Saul Schleimer, et al., "Winnowing:Local Algorithms for Document Fingerprinting",

In the preceedings of the ACM SIGMOD international conference on management of

data, 2003.

[3] Matthew Salisbury, "Plagiarism Detection: An Architectural and Semantic Approach",

BE project, University of Leeds, 2009.

[4] Thomas H. Cormen, et al., "Introduction to Algorithms", 2
nd

 ed., MIT press, pp 906-

923, 2008.

46

APPENDIX A: Gantt Charts

ID Task Name Start Finish Duration

Q3 10 Q4 10

Sep Oct Nov

1 1.2w08-09-201001-09-2010Planning

2 1.2w15-09-201008-09-2010Requirements

3 1w22-09-201016-09-2010High Level Design

4 1.4w30-09-201022-09-2010Detail Design

5 6.2w12-11-201001-10-2010Implementation

6 5.4w08-11-201001-10-2010Coding

7 5.4w12-11-201007-10-2010Self Unit Testing

8 3.6w17-11-201025-10-2010Code Integration

9 1.8w24-11-201012-11-2010System Testing

10 1.4w30-11-201022-11-2010Documentation

Figure A.1

47

ID Task Name Start Finish Duration

Q4 10 Q1 11Q3 10

DecNov JanOctSep

1 6d08-09-201001-09-2010Planning

2 9d17-09-201007-09-2010Requirements

3 6d22-09-201015-09-2010High Level Design

4 7d30-09-201022-09-2010Detail Design

5 35d18-11-201001-10-2010Implementation

6 33d16-11-201001-10-2010Coding

7 30d18-11-201008-10-2010Self Unit Testing

8 26d22-11-201018-10-2010Code Integration

9 6d29-11-201022-11-2010System Testing

10 11d06-01-201123-12-2010Documentation

Figure A.2

48

APPENDIX B: Data Flow Diagrams

Figure B.1

Login info

Denial

Acceptance

note

Set FP

parameters

Crawled

pages

Input docs

Matched

docs FP FP

FP DB

1.1

Authentication

System

1.3

Web Base

System

1.2

Checking

System

URL/command

to make DB

49

Figure B.2

Input docs

Set FP

parameters

Input docs

FP

Crawled

pages

Matched

docs

FP

1.2.1

FP Generator

System

1.2.2

FP Comparator

System

50

Figure B.3

Crawled pages

URL

Crawled

pages

FP

Command to

make DB

1.3.1

Web Base

Creator

1.3.2

FP DB Generator

System

51

APPENDIX C: Test Cases

 On the basis of functional requirements

 Input URL in URL dispenser list

Table C.1

S. No. Test Cases Expected Results Actual result

1 Running the crawler without

providing URL

Crawler indicates that the URL is

missing

As expected

2 Running the crawler without

providing the number of

pages to crawl from the URL

Crawler indicates that the number

is missing

As expected

3 Running the crawler by

providing a fake URL

Crawler signals error in the URL. It

shows that URL doesn't

As expected

4 Running the crawler

successfully

WebPages of the websites are

downloaded on the repository

along with their corresponding text

files(text part extracted from html

files) in addition to a mapper log

file corresponding to each website

containing the webpage id to URL

mapping for all the WebPages

inside that website directory

As expected

 Command to make/update DB of fingerprints

Table C.2

S. No. Test Cases Expected Results Actual result

1 Administrator gives the

command to update the

database by the fingerprints

Fingerprint database maintainer

scans the log file and updates the

database by adding the fingerprints

As expected

52

of the recently crawled

websites which have not

been added to the database

yet

of the websites whose name is not

there on the log and writes the

name of the websites on the log

after updates the database

 Login to the system

Table C.3

S. No. Test Cases Expected Results Actual result

1 Trying to register with an

existing username

Registration error indicating that

the user with that

As expected

2 Trying to register with an

incorrect email format

Registration error indicating that

the user with that email

As expected

3 Trying to login with an

invalid username/password

Login error indicating invalid

username or password

As expected

4 First logout and then try to

open other pages except

login & register by directly

typing the URL in the

browser's address bar

Redirect the end-user to the login

page

As expected

5 Trying to register with

different password in

password and confirm

password field

Registration error showing that the

two password fields do not match

As expected

6 Trying to register with a new

username with an existing

email id

Registration error

indicating that the user with that

email address already exists

As expected

7 Trying to login with a valid

username and password pair

User passes the authentication and

a webpage with an file input field

is displayed

As expected

53

 Input document

Table C.4

S. No. Test Cases Expected Results Actual result

1 Click “Begin Detection”

button without selecting a

file

Stay at the same page

As expected

2 Select wrong file type when

choosing a file

Stay at the same page displaying

the file type error

As expected

3 Select an empty .txt file for

plagiarism detection

Stay at the same page indicating

that the file size is zero

As expected

4 Selecting a text file

containing letters less than

the k-length of the system

for detection

Stay at the same page showing that

the contents inside the file is too

less to detect

As expected

 On the basis of non-functional requirements

 Usability

Table C.5

S. No. Test Cases Expected Results Actual result

1 Open web page Load home page with buttons to

login and register

As expected

2 Clicking on the logout

button

Log out the user from the website

and redirect back to the homepage

As expected

3 Running the crawler and

uploading the document for

detection at the same time

Both run independently and the

system handles the end users

request gracefully.

As expected

4 Generating fingerprints and

uploading document for

detection at the same time

Both run independently and the

system handles the end users

request gracefully.

As expected

54

 Performance

Table C.6

S. No. Test Cases Expected Results Actual result

1 Perform plagiarism detection

on exactly replicated text

doc from the webpage stored

in the web base and whose

fingerprints are stored in the

database

System indicates 100% plagiarism

on the input text doc

Observed 0-10

percentage error

2 Perform plagiarism detection

on a test doc with

approximate assumption that

the doc is plagiarism free

System indicates no plagiarism on

the input text doc

As expected

3 Simultaneous detection

request to the system from

multiple clients

Gracefully handle the multiple

clients and return the result back to

all of them

As expected

4 Does the crawler download

the pages of the website in

the same domain?

Downloads the pages of the

website in the same domain

As expected

55

APPENDIX D: Benchmarks

Figure D.1

Figure D.4

0

20

40

60

80

100

120

0 5 10

number of line

positioned changed

vs percentage

similarity

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400

total characters vs

file size

total characters vs

generation

time(CPU sec)

Number of line position changed Vs. Percentage similarity

Number of line position changed

Percentage

Similarity

Total Characters

File size,

Generation

time (CPU

secs)

Total Characters Vs. File size, Generation time (CPU

secs)

56

Figure D.5

Figure D.6

0

50

100

150

200

250

300

0 50 100 150

window size vs.

fingerprint count

Window size

Fingerprint

count

Window size Vs. Fingerprint count

57

APPENDIX E: Different Implementation of Winnowing

Figure E.1

Figure E.2

58

APPENDIX F: Web Front-End

Figure F.1

59

Figure F.2

60

Figure F.3

61

Figure F.4

62

Figure F.5

63

Figure F.6

64

Figure F.7

